1#ifndef CYTNX_SYMMETRY_H_
2#define CYTNX_SYMMETRY_H_
9#include "boost/smart_ptr/intrusive_ptr.hpp"
14#include "utils/dynamic_arg_resolver.hpp"
45 std::vector<cytnx_int64> tmpQs;
48 template <
class... Ts>
49 Qs(
const cytnx_int64 &e1,
const Ts... elems) {
50 this->tmpQs = dynamic_arg_int64_resolver(e1, elems...);
53 Qs(
const std::vector<cytnx_int64> &qin) { this->tmpQs = qin; }
56 explicit operator std::vector<cytnx_int64>()
const {
return this->tmpQs; };
58 std::pair<std::vector<cytnx_int64>, cytnx_uint64>
operator>>(
const cytnx_uint64 &dim) {
59 return std::make_pair(this->tmpQs, dim);
64 class Symmetry_base :
public intrusive_ptr_base<Symmetry_base> {
68 Symmetry_base() : stype_id(SymmetryType::Void){};
69 Symmetry_base(
const int &n) : stype_id(
SymmetryType::
Void) { this->Init(n); };
70 Symmetry_base(
const Symmetry_base &rhs);
71 Symmetry_base &operator=(
const Symmetry_base &rhs);
73 std::vector<cytnx_int64> combine_rule(
const std::vector<cytnx_int64> &inL,
74 const std::vector<cytnx_int64> &inR);
75 cytnx_int64 combine_rule(
const cytnx_int64 &inL,
const cytnx_int64 &inR,
76 const bool &is_reverse);
78 cytnx_int64 reverse_rule(
const cytnx_int64 &in);
80 virtual void Init(
const int &n){};
81 virtual boost::intrusive_ptr<Symmetry_base> clone() {
return nullptr; };
82 virtual bool check_qnum(
83 const cytnx_int64 &in_qnum);
84 virtual bool check_qnums(
const std::vector<cytnx_int64> &in_qnums);
85 virtual void combine_rule_(std::vector<cytnx_int64> &out,
const std::vector<cytnx_int64> &inL,
86 const std::vector<cytnx_int64> &inR);
87 virtual void combine_rule_(cytnx_int64 &out,
const cytnx_int64 &inL,
const cytnx_int64 &inR,
88 const bool &is_reverse);
89 virtual void reverse_rule_(cytnx_int64 &out,
const cytnx_int64 &in);
90 virtual fermionParity get_fermion_parity(
const cytnx_int64 &in_qnum)
const;
91 virtual bool is_fermionic()
const {
return false; };
93 virtual void print_info()
const;
94 virtual std::string stype_str()
const;
101 class U1Symmetry :
public Symmetry_base {
103 U1Symmetry() { this->stype_id = SymmetryType::U; };
104 U1Symmetry(
const int &n) { this->Init(n); };
105 void Init(
const int &n) {
106 this->stype_id = SymmetryType::U;
108 if (n != 1)
cytnx_error_msg(1,
"%s",
"[ERROR] U1Symmetry should set n = 1");
110 boost::intrusive_ptr<Symmetry_base> clone() {
111 boost::intrusive_ptr<Symmetry_base> out(
new U1Symmetry(this->n));
114 bool check_qnum(
const cytnx_int64 &in_qnum);
115 bool check_qnums(
const std::vector<cytnx_int64> &in_qnums);
116 void combine_rule_(std::vector<cytnx_int64> &out,
const std::vector<cytnx_int64> &inL,
117 const std::vector<cytnx_int64> &inR);
118 void combine_rule_(cytnx_int64 &out,
const cytnx_int64 &inL,
const cytnx_int64 &inR,
119 const bool &is_reverse);
120 void reverse_rule_(cytnx_int64 &out,
const cytnx_int64 &in);
121 void print_info()
const;
122 std::string stype_str()
const override {
return "U1"; };
127 class ZnSymmetry :
public Symmetry_base {
129 ZnSymmetry() { this->stype_id = SymmetryType::Z; };
130 ZnSymmetry(
const int &n) { this->Init(n); };
131 void Init(
const int &n) {
132 this->stype_id = SymmetryType::Z;
134 if (n <= 1)
cytnx_error_msg(1,
"%s",
"[ERROR] ZnSymmetry can only have n > 1");
136 boost::intrusive_ptr<Symmetry_base> clone() {
137 boost::intrusive_ptr<Symmetry_base> out(
new ZnSymmetry(this->n));
140 bool check_qnum(
const cytnx_int64 &in_qnum);
141 bool check_qnums(
const std::vector<cytnx_int64> &in_qnums);
142 void combine_rule_(std::vector<cytnx_int64> &out,
const std::vector<cytnx_int64> &inL,
143 const std::vector<cytnx_int64> &inR);
144 void combine_rule_(cytnx_int64 &out,
const cytnx_int64 &inL,
const cytnx_int64 &inR,
145 const bool &is_reverse);
146 void reverse_rule_(cytnx_int64 &out,
const cytnx_int64 &in);
147 void print_info()
const;
148 std::string stype_str()
const override {
return "Z" + std::to_string(this->n); };
153 class FermionParitySymmetry :
public Symmetry_base {
155 FermionParitySymmetry() {
156 this->stype_id = SymmetryType::fPar;
159 boost::intrusive_ptr<Symmetry_base> clone() {
160 boost::intrusive_ptr<Symmetry_base> out(
new FermionParitySymmetry());
163 bool check_qnum(
const cytnx_int64 &in_qnum);
164 bool check_qnums(
const std::vector<cytnx_int64> &in_qnums);
165 void combine_rule_(std::vector<cytnx_int64> &out,
const std::vector<cytnx_int64> &inL,
166 const std::vector<cytnx_int64> &inR);
167 void combine_rule_(cytnx_int64 &out,
const cytnx_int64 &inL,
const cytnx_int64 &inR,
168 const bool &is_reverse);
169 void reverse_rule_(cytnx_int64 &out,
const cytnx_int64 &in);
170 fermionParity get_fermion_parity(
const cytnx_int64 &in_qnum)
const override;
171 bool is_fermionic()
const override {
return true; };
172 void print_info()
const;
173 std::string stype_str()
const override {
return "fP"; }
178 class FermionNumberSymmetry :
public Symmetry_base {
180 FermionNumberSymmetry() {
181 this->stype_id = SymmetryType::fNum;
184 boost::intrusive_ptr<Symmetry_base> clone() {
185 boost::intrusive_ptr<Symmetry_base> out(
new FermionNumberSymmetry());
188 bool check_qnum(
const cytnx_int64 &in_qnum);
189 bool check_qnums(
const std::vector<cytnx_int64> &in_qnums);
190 void combine_rule_(std::vector<cytnx_int64> &out,
const std::vector<cytnx_int64> &inL,
191 const std::vector<cytnx_int64> &inR);
192 void combine_rule_(cytnx_int64 &out,
const cytnx_int64 &inL,
const cytnx_int64 &inR,
193 const bool &is_reverse);
194 void reverse_rule_(cytnx_int64 &out,
const cytnx_int64 &in);
195 fermionParity get_fermion_parity(
const cytnx_int64 &in_qnum)
const override;
196 bool is_fermionic()
const override {
return true; };
197 void print_info()
const;
198 std::string stype_str()
const override {
return "f#"; }
209 boost::intrusive_ptr<Symmetry_base> _impl;
211 Symmetry(
const int &
stype = -1,
const int &
n = 0) : _impl(
new Symmetry_base()) {
215 void Init(
const int &
stype = -1,
const int &
n = 0) {
217 boost::intrusive_ptr<Symmetry_base> tmp(
new U1Symmetry(1));
220 boost::intrusive_ptr<Symmetry_base> tmp(
new ZnSymmetry(
n));
223 boost::intrusive_ptr<Symmetry_base> tmp(
new FermionParitySymmetry());
226 boost::intrusive_ptr<Symmetry_base> tmp(
new FermionNumberSymmetry());
233 this->_impl = rhs._impl;
359 out._impl = this->_impl->
clone();
369 int stype()
const {
return this->_impl->stype_id; }
380 int &
n()
const {
return this->_impl->n; }
389 std::string
stype_str()
const {
return this->_impl->stype_str(); }
397 bool check_qnum(
const cytnx_int64 &qnum) {
return this->_impl->check_qnum(qnum); }
407 return this->_impl->check_qnums(qnums);
416 std::vector<cytnx_int64>
combine_rule(
const std::vector<cytnx_int64> &inL,
417 const std::vector<cytnx_int64> &inR) {
418 return this->_impl->combine_rule(inL, inR);
428 void combine_rule_(std::vector<cytnx_int64> &out,
const std::vector<cytnx_int64> &inL,
429 const std::vector<cytnx_int64> &inR) {
430 this->_impl->combine_rule_(out, inL, inR);
439 cytnx_int64
combine_rule(
const cytnx_int64 &inL,
const cytnx_int64 &inR,
440 const bool &is_reverse =
false)
const {
441 return this->_impl->combine_rule(inL, inR, is_reverse);
451 void combine_rule_(cytnx_int64 &out,
const cytnx_int64 &inL,
const cytnx_int64 &inR,
452 const bool &is_reverse =
false) {
453 this->_impl->combine_rule_(out, inL, inR, is_reverse);
465 this->_impl->reverse_rule_(out, in);
476 cytnx_int64
reverse_rule(
const cytnx_int64 &in)
const {
return this->_impl->reverse_rule(in); }
485 return this->_impl->get_fermion_parity(in_qnum);
499 void Save(
const std::string &fname)
const;
504 void Save(
const char *fname)
const;
520 void _Save(std::fstream &f)
const;
521 void _Load(std::fstream &f);
541 std::ostream &operator<<(std::ostream &os,
const Symmetry &in);
Definition Symmetry.hpp:43
Qs(const cytnx_int64 &e1, const Ts... elems)
Definition Symmetry.hpp:49
Qs(const std::vector< cytnx_int64 > &qin)
Definition Symmetry.hpp:53
std::pair< std::vector< cytnx_int64 >, cytnx_uint64 > operator>>(const cytnx_uint64 &dim)
Definition Symmetry.hpp:58
the symmetry object
Definition Symmetry.hpp:205
static Symmetry Zn(const int &n)
create a Zn discrete symmetry object with
Definition Symmetry.hpp:299
bool check_qnum(const cytnx_int64 &qnum)
check the quantum number qnum is within the valid value range of current Symmetry.
Definition Symmetry.hpp:397
std::vector< cytnx_int64 > combine_rule(const std::vector< cytnx_int64 > &inL, const std::vector< cytnx_int64 > &inR)
apply combine rule of current symmetry to two quantum number lists.
Definition Symmetry.hpp:416
std::string stype_str() const
return the symmetry type name of current Symmetry object in string form, see cytnx::SymmetryType::
Definition Symmetry.hpp:389
static Symmetry FermionParity()
create a fermionic parity symmetry object
Definition Symmetry.hpp:320
void Save(const char *fname) const
Same as Save(const std::string &fname) const;.
cytnx_int64 combine_rule(const cytnx_int64 &inL, const cytnx_int64 &inR, const bool &is_reverse=false) const
apply combine rule of current symmetry to two quantum numbers.
Definition Symmetry.hpp:439
Symmetry clone() const
return a clone instance of current Symmetry object.
Definition Symmetry.hpp:357
static Symmetry FermionNumber()
create a fermionic occupation number symmetry object
Definition Symmetry.hpp:341
bool check_qnums(const std::vector< cytnx_int64 > &qnums)
check all the quantum numbers \qnums are within the valid value range of current Symmetry.
Definition Symmetry.hpp:406
int stype() const
return the symmetry type-id of current Symmetry object, see cytnx::SymmetryType::
Definition Symmetry.hpp:369
int & n() const
return the discrete n of current Symmetry object.
Definition Symmetry.hpp:380
bool operator==(const Symmetry &rhs) const
the equality operator of the Symmetry object.
bool is_fermionic() const
check if the Symmetry is fermionic or not
Definition Symmetry.hpp:492
void combine_rule_(std::vector< cytnx_int64 > &out, const std::vector< cytnx_int64 > &inL, const std::vector< cytnx_int64 > &inR)
apply combine rule of current symmetry to two quantum number lists, and store it into parameter out.
Definition Symmetry.hpp:428
void combine_rule_(cytnx_int64 &out, const cytnx_int64 &inL, const cytnx_int64 &inR, const bool &is_reverse=false)
apply combine rule of current symmetry to two quantum numbers, and store the combined quntun number i...
Definition Symmetry.hpp:451
void print_info() const
Print the information of current Symmetry object.
Definition Symmetry.hpp:527
static Symmetry U1()
create a U1 symmetry object
Definition Symmetry.hpp:268
cytnx_int64 reverse_rule(const cytnx_int64 &in) const
Apply reverse rule of current symmetry to a given quantum number and return the result.
Definition Symmetry.hpp:476
static Symmetry Load(const char *fname)
Same as static Symmetry Load(const std::string &fname);.
void reverse_rule_(cytnx_int64 &out, const cytnx_int64 &in)
Apply reverse rule of current symmetry to a given quantum number and store in parameter out.
Definition Symmetry.hpp:464
bool operator!=(const Symmetry &rhs) const
the inequality operator of the Symmetry object.
void Save(const std::string &fname) const
Save the current Symmetry object to a file.
static Symmetry Load(const std::string &fname)
Load a Symmetry object from a file.
fermionParity get_fermion_parity(const cytnx_int64 &in_qnum) const
fermionic parity for a given quantum number
Definition Symmetry.hpp:484
#define cytnx_error_msg(is_true, format,...)
Definition cytnx_error.hpp:18
Definition Accessor.hpp:12
SymmetryType
Symmetry type.
Definition Symmetry.hpp:32
@ U
Definition Symmetry.hpp:32
@ fNum
Definition Symmetry.hpp:32
@ Z
Definition Symmetry.hpp:32
@ Void
Definition Symmetry.hpp:32
@ fPar
Definition Symmetry.hpp:32
fermionParity
fermionParity
Definition Symmetry.hpp:40
@ EVEN
Definition Symmetry.hpp:40
@ ODD
Definition Symmetry.hpp:40