6#include "backend/Storage.hpp"
11#include "utils/vec_range.hpp"
12#include "utils/vec_cast.hpp"
13#include "utils/dynamic_arg_resolver.hpp"
18#include <initializer_list>
20#include "backend/Scalar.hpp"
26 class Tensor_impl :
public intrusive_ptr_base<Tensor_impl> {
29 Storage_init_interface __SII;
35 std::vector<cytnx_uint64> _shape;
38 std::vector<cytnx_uint64> _mapper;
39 std::vector<cytnx_uint64> _invmapper;
44 boost::intrusive_ptr<Tensor_impl> _clone_meta_only()
const {
45 boost::intrusive_ptr<Tensor_impl> out(
new Tensor_impl());
46 out->_mapper = this->_mapper;
47 out->_invmapper = this->_invmapper;
48 out->_shape = this->_shape;
49 out->_contiguous = this->_contiguous;
52 Tensor_impl() : _contiguous(true){};
54 void Init(
const std::vector<cytnx_uint64> &shape,
const unsigned int &dtype =
Type.Double,
55 int device = -1,
const bool &init_zero =
true);
56 void Init(
const Storage &in);
71 Tensor_impl(
const Tensor_impl &rhs);
72 Tensor_impl &operator=(
const Tensor_impl &rhs);
74 unsigned int dtype()
const {
return this->_storage.dtype(); }
75 int device()
const {
return this->_storage.device(); }
77 std::string dtype_str()
const {
return Type.getname(this->_storage.dtype()); }
78 std::string device_str()
const {
return Device.getname(this->_storage.device()); }
80 const std::vector<cytnx_uint64> &shape()
const {
return _shape; }
82 const bool &is_contiguous()
const {
return this->_contiguous; }
84 const std::vector<cytnx_uint64> &mapper()
const {
return this->_mapper; }
85 const std::vector<cytnx_uint64> &invmapper()
const {
return this->_invmapper; }
86 Storage &storage() {
return _storage; }
88 const Storage &storage()
const {
return _storage; }
90 boost::intrusive_ptr<Tensor_impl> clone()
const {
91 boost::intrusive_ptr<Tensor_impl> out = this->_clone_meta_only();
92 out->_storage = this->_storage.clone();
96 void to_(
const int &device) { this->_storage.to_(device); }
97 boost::intrusive_ptr<Tensor_impl> to(
const int &device) {
98 if (this->device() == device) {
102 boost::intrusive_ptr<Tensor_impl> out = this->_clone_meta_only();
103 out->_storage = this->_storage.to(device);
108 void permute_(
const std::vector<cytnx_uint64> &rnks);
110 boost::intrusive_ptr<Tensor_impl> permute(
const std::vector<cytnx_uint64> &rnks);
113 T &at(
const std::vector<cytnx_uint64> &locator)
const {
115 "The input index does not match Tensor's rank.");
125 for (cytnx_int64 i = this->_shape.size() - 1; i >= 0; i--) {
126 if (locator[i] >= this->_shape[i]) {
127 cytnx_error_msg(
true,
"%s",
"Attempting to access out-of-bound index in Tensor.");
131 c_shape = this->_shape[this->_invmapper[i]];
132 c_loc = locator[this->_invmapper[i]];
133 RealRank += mtplyr * c_loc;
136 return this->_storage.at<T>(RealRank);
139 const Scalar::Sproxy at(
const std::vector<cytnx_uint64> &locator)
const {
141 "The input index does not match Tensor's rank.");
151 for (cytnx_int64 i = this->_shape.size() - 1; i >= 0; i--) {
152 if (locator[i] >= this->_shape[i]) {
153 cytnx_error_msg(
true,
"%s",
"Attempting to access out-of-bound index in Tensor.");
157 c_shape = this->_shape[this->_invmapper[i]];
158 c_loc = locator[this->_invmapper[i]];
159 RealRank += mtplyr * c_loc;
162 return this->_storage.at(RealRank);
165 Scalar::Sproxy at(
const std::vector<cytnx_uint64> &locator) {
167 "The input index does not match Tensor's rank.");
177 for (cytnx_int64 i = this->_shape.size() - 1; i >= 0; i--) {
178 if (locator[i] >= this->_shape[i]) {
179 cytnx_error_msg(
true,
"%s",
"Attempting to access out-of-bound index in Tensor.");
183 c_shape = this->_shape[this->_invmapper[i]];
184 c_loc = locator[this->_invmapper[i]];
185 RealRank += mtplyr * c_loc;
188 return this->_storage.at(RealRank);
191 boost::intrusive_ptr<Tensor_impl> get(
const std::vector<cytnx::Accessor> &accessors);
192 boost::intrusive_ptr<Tensor_impl> get_deprecated(
const std::vector<cytnx::Accessor> &accessors);
193 void set(
const std::vector<cytnx::Accessor> &accessors,
194 const boost::intrusive_ptr<Tensor_impl> &rhs);
197 void set(
const std::vector<cytnx::Accessor> &accessors,
const T &rc);
199 void set(
const std::vector<cytnx::Accessor> &accessors,
const Scalar::Sproxy &rc);
202 void fill(
const Tx &val) {
203 this->storage().fill(val);
206 boost::intrusive_ptr<Tensor_impl> contiguous() {
209 if (this->_contiguous) {
210 boost::intrusive_ptr<Tensor_impl> out(
this);
214 boost::intrusive_ptr<Tensor_impl> out(
new Tensor_impl());
215 std::vector<cytnx_uint64> oldshape(this->_shape.size());
216 for (cytnx_uint64 i = 0; i < this->_shape.size(); i++) {
217 oldshape[i] = this->_shape[this->_invmapper[i]];
220 out->_storage._impl =
221 this->_storage._impl->Move_memory(oldshape, this->_mapper, this->_invmapper);
225 out->_invmapper = vec_range(this->_invmapper.size());
226 out->_mapper = out->_invmapper;
227 out->_shape = this->_shape;
228 out->_contiguous =
true;
236 if (!this->_contiguous) {
237 std::vector<cytnx_uint64> oldshape(this->_shape.size());
238 for (cytnx_uint64 i = 0; i < this->_shape.size(); i++) {
239 oldshape[i] = this->_shape[this->_invmapper[i]];
242 this->_storage._impl =
243 this->_storage._impl->Move_memory(oldshape, this->_mapper, this->_invmapper);
246 vec_range_(this->_mapper, this->invmapper().size());
247 this->_invmapper = this->_mapper;
248 this->_contiguous =
true;
252 void reshape_(
const std::vector<cytnx_int64> &new_shape) {
253 if (!this->_contiguous) {
258 bool has_undetermine =
false;
259 unsigned int Udet_id = 0;
261 this->_shape.resize(new_shape.size());
262 for (cytnx_uint64 i = 0; i < new_shape.size(); i++) {
263 this->_shape[i] = new_shape[i];
265 for (
int i = 0; i < new_shape.size(); i++) {
266 if (new_shape[i] < 0) {
267 if (new_shape[i] != -1)
269 new_shape[i] != -1,
"%s",
270 "[ERROR] reshape can only have dimension > 0 and one undetermine rank specify as -1");
273 new_shape[i] != -1,
"%s",
274 "[ERROR] reshape can only have dimension > 0 and one undetermine rank specify as -1");
276 has_undetermine =
true;
278 new_N *= new_shape[i];
283 if (has_undetermine) {
285 "[ERROR] new shape exceed the total number of elements.");
287 "[ERROR] unmatch size when reshape with undetermine dimension");
289 this->_shape[Udet_id] = this->_storage.size() / new_N;
292 "[ERROR] new shape does not match the number of elements.");
297 this->_mapper.resize(new_shape.size());
298 vec_range_(this->_mapper, new_shape.size());
299 this->_invmapper = this->_mapper;
302 boost::intrusive_ptr<Tensor_impl> reshape(
const std::vector<cytnx_int64> &new_shape) {
303 boost::intrusive_ptr<Tensor_impl> out(
new Tensor_impl());
304 if (this->is_contiguous()) {
305 out = this->_clone_meta_only();
306 out->_storage = this->_storage;
308 out = this->contiguous();
312 out->reshape_(new_shape);
316 boost::intrusive_ptr<Tensor_impl> astype(
const int &new_type) {
319 if (this->dtype() == new_type) {
322 boost::intrusive_ptr<Tensor_impl> out = this->_clone_meta_only();
323 out->_storage = this->_storage.astype(new_type);
335 Tensor
operator+(
const Tensor &lhs,
const T &rc);
337 Tensor
operator-(
const Tensor &lhs,
const T &rhs);
339 Tensor
operator*(
const Tensor &lhs,
const T &rhs);
341 Tensor
operator/(
const Tensor &lhs,
const T &rhs);
351 boost::intrusive_ptr<Tensor_impl>
_insimpl;
352 std::vector<cytnx::Accessor>
_accs;
353 Tproxy(boost::intrusive_ptr<Tensor_impl>
_ptr,
const std::vector<cytnx::Accessor> &
accs)
357 const Tensor &operator=(
const Tensor &
rhs) {
358 this->_insimpl->set(
_accs,
rhs._impl);
363 const T &operator=(
const T &
rc) {
364 this->_insimpl->set(
_accs,
rc);
368 Tensor
tmp = Tensor(
rc);
369 this->_insimpl->set(
_accs,
tmp._impl);
508 return out.item<
T>();
511 Scalar::Sproxy
item()
const {
518 operator Tensor()
const {
527 return out.storage();
537 template <
class...
Ts>
543 template <
class...
Ts>
549 template <
class...
Ts>
555 template <
class...
Ts>
556 const Tproxy operator()(
const std::string &
e1,
const Ts &...
elems)
const {
561 template <
class...
Ts>
566 template <
class...
Ts>
575 std::vector<cytnx::Accessor>
tmp =
accs;
586 std::vector<cytnx::Accessor>
tmp =
accs;
591 std::vector<cytnx_int64>
tmp =
accs;
595 std::vector<cytnx::Accessor>
acc_in;
596 for (
int i = 0;
i <
accs.size();
i++) {
602 std::vector<cytnx_int64>
tmp =
accs;
606 std::vector<cytnx::Accessor>
acc_in;
607 for (
int i = 0;
i <
accs.size();
i++) {
613 std::vector<cytnx::Accessor>
acc_in;
614 for (
int i = 0;
i <
accs.size();
i++) {
623 void _Save(std::fstream &f)
const;
624 void _Load(std::fstream &f);
704 boost::intrusive_ptr<Tensor_impl>
_impl;
718 Tensor &operator=(
const Tensor &
rhs) {
756 boost::intrusive_ptr<Tensor_impl> tmp(
new Tensor_impl());
807 boost::intrusive_ptr<Tensor_impl> tmp(
new Tensor_impl());
818 unsigned int dtype()
const {
return this->_impl->dtype(); }
825 int device()
const {
return this->_impl->device(); }
832 std::string
dtype_str()
const {
return this->_impl->dtype_str(); }
839 std::string
device_str()
const {
return this->_impl->device_str(); }
845 const std::vector<cytnx_uint64> &
shape()
const {
return this->_impl->shape(); }
932 template <
class...
Ts>
935 this->_impl->permute_(
argv);
964 template <
class...
Ts>
1036 this->_impl->reshape_(
shape);
1040 this->_impl->reshape_(
shape);
1042 template <
class...
Ts>
1046 this->_impl->reshape_(
shape);
1084 std::vector<cytnx_int64> tmp(
new_shape.size());
1099 template <
class...
Ts>
1163 return this->_impl->at<
T>(
locator);
1171 return this->_impl->at<
T>(
locator);
1174 template <
class T,
class...
Ts>
1177 return this->
at<T>(argv);
1179 template <
class T,
class...
Ts>
1182 return this->
at<T>(argv);
1185 const Scalar::Sproxy
at(
const std::vector<cytnx_uint64> &
locator)
const {
1186 return this->_impl->at(
locator);
1189 Scalar::Sproxy
at(
const std::vector<cytnx_uint64> &
locator) {
return this->_impl->at(
locator); }
1219 cytnx_error_msg(this->_impl->storage().size() != 1,
"[ERROR][Tensor.item<T>]%s",
1220 "item can only be called from a Tensor with only one element\n");
1221 return this->_impl->storage().at<
T>(0);
1226 const T &
item()
const {
1227 cytnx_error_msg(this->_impl->storage().size() != 1,
"[ERROR][Tensor.item<T>]%s",
1228 "item can only be called from a Tensor with only one element\n");
1229 return this->_impl->storage().at<
T>(0);
1232 const Scalar::Sproxy
item()
const {
1233 Scalar::Sproxy
out(this->
storage()._impl, 0);
1237 Scalar::Sproxy
item() {
1238 Scalar::Sproxy
out(this->
storage()._impl, 0);
1325 void set(
const std::initializer_list<cytnx::Accessor> &
accessors,
const T &
rc) {
1327 this->
set(args,
rc);
1358 this->_impl->fill(
val);
1366 if (this->
shape() != rhs.shape())
return false;
1501 return *
this +=
rhs;
1521 return *
this -=
rhs;
1541 return *
this *=
rhs;
1563 return *
this /=
rhs;
1574 return *
this ==
rhs;
1686 "[ERROR] try to append a null Tensor.%s",
"\n");
1688 "[ERROR] try to append a Tensor with rank not match.%s",
"\n");
1690 for (
unsigned int i = 0;
i <
rhs.shape().size();
i++) {
1692 "[ERROR] dimension mismatch @ rhs.rank: [%d] this: [%d] rhs: [%d]\n",
i,
1699 if (
rhs.dtype() !=
this->dtype()) {
1703 if (!
in.is_contiguous())
1708 this->_impl->_shape[0] += 1;
1711 memcpy(((
char *)this->_impl->_storage.data()) +
1713 in._impl->_storage.data(),
Type.typeSize(
in.dtype()) *
Nelem);
1747 "[ERROR] try to append a null Tensor.%s",
"\n");
1749 "[ERROR] append a storage to Tensor can only accept rank-2 Tensor.%s",
"\n");
1755 if (
srhs.dtype() !=
this->dtype()) {
1760 this->_impl->_shape[0] += 1;
1762 this->_impl->_storage.resize(
oldsize +
in.size());
1763 memcpy(((
char *)this->_impl->_storage.data()) +
1765 in._impl->Mem,
Type.typeSize(
in.dtype()) *
in.size());
1807 "[ERROR] trying to append a scalar into multidimentional Tensor is not "
1808 "allow.\n Only rank-1 Tensor can accept scalar append.%s",
1811 "[ERROR] append require the Tensor to be contiguous. suggestion: call "
1812 "contiguous() or contiguous_() first.",
1814 this->_impl->_shape[0] += 1;
1815 this->_impl->_storage.append(
rhs);
1841 std::vector<Tensor>
Eigh(
const bool &
is_V =
true,
const bool &
row_v =
false)
const;
1952 std::ostream &operator<<(std::ostream &os,
const Tensor &in);
1953 std::ostream &operator<<(std::ostream &os,
const Tensor::Tproxy &in);
object that mimic the python slice to access elements in C++ [this is for c++ API only].
Definition Accessor.hpp:17
an tensor (multi-dimensional array)
Definition Tensor.hpp:41
void append(const Storage &srhs)
the append function of the Storage.
Definition Tensor.old.hpp:1742
Tensor & operator*=(const T &rc)
multiplication assignment operator with a Tensor or a scalar.
Tensor & Inv_(const double &clip)
the Inv_ member function. Same as cytnx::linalg::Inv_(Tensor &Tin, const double &clip)
Tensor & operator/=(const T &rc)
division assignment operator with a Tensor or a scalar.
Tensor operator-()
The negation function.
Definition Tensor.hpp:1322
void fill(const T &val)
fill all the element of current Tensor with the value.
Definition Tensor.old.hpp:1357
Tensor InvM() const
the InvM member function. Same as cytnx::linalg::InvM(const Tensor &Tin), where Tin is the current Te...
bool same_data(const Tensor &rhs) const
Check whether two tensors share the same internal memory.
void to_(const int &device)
move the current Tensor to the device.
Definition Tensor.old.hpp:919
Tensor reshape(const std::vector< cytnx_uint64 > &new_shape) const
Definition Tensor.old.hpp:1083
Tensor(const std::vector< cytnx_uint64 > &shape, const unsigned int &dtype=Type.Double, const int &device=-1, const bool &init_zero=1)
Construct a new Tensor object.
Definition Tensor.old.hpp:784
void append(const T &rhs)
the append function of the scalar.
Definition Tensor.old.hpp:1805
Tensor & operator-=(const T &rc)
subtraction assignment operator with a Tensor or a scalar.
Tensor & Add_(const T &rhs)
Addition function with a Tensor or a scalar, inplacely. Same as operator+=(const T &rhs).
Definition Tensor.old.hpp:1500
Tensor Abs() const
the Abs member function. Same as linalg::Abs(const Tensor &Tin), where Tin is the current Tensor.
Tensor reshape(const std::initializer_list< cytnx_int64 > &new_shape) const
Definition Tensor.old.hpp:1094
std::string device_str() const
the device (in string) of the Tensor
Definition Tensor.old.hpp:839
void reshape_(const std::vector< cytnx_int64 > &new_shape)
reshape the Tensor, inplacely
Definition Tensor.old.hpp:1032
Tensor contiguous_()
Make the Tensor contiguous by coalescing the memory (storage), inplacely.
Definition Tensor.old.hpp:1006
Tensor permute_(const std::vector< cytnx_uint64 > &rnks)
Definition Tensor.old.hpp:927
Tensor Mul(const T &rhs)
Multiplication function with a Tensor or a scalar. Same as cytnx::operator*(const Tensor &self,...
Definition Tensor.old.hpp:1530
unsigned int dtype() const
the dtype-id of the Tensor
Definition Tensor.hpp:514
Tensor Sub(const T &rhs)
Subtraction function with a Tensor or a scalar. Same as cytnx::operator-(const Tensor &self,...
Definition Tensor.old.hpp:1510
Tensor Inv(const double &clip) const
the Inv member function. Same as cytnx::linalg::Inv(const Tensor &Tin, const double &clip)
Tensor contiguous() const
Make the Tensor contiguous by coalescing the memory (storage).
Definition Tensor.old.hpp:986
void Tofile(const std::string &fname) const
Save current Tensor to the binary file.
T & at(const std::vector< cytnx_uint64 > &locator)
Get an element at specific location.
Definition Tensor.old.hpp:1162
Tensor reshape(const std::vector< cytnx_int64 > &new_shape) const
return a new Tensor that is reshaped.
Definition Tensor.old.hpp:1074
static Tensor Fromfile(const std::string &fname, const unsigned int &dtype, const cytnx_int64 &count=-1)
Load current Tensor from the binary file.
T & item()
get the element from a rank-0 Tensor.
Definition Tensor.hpp:914
Tensor clone() const
return a clone of the current Tensor.
Definition Tensor.old.hpp:870
std::vector< Tensor > Eigh(const bool &is_V=true, const bool &row_v=false) const
the Eigh member function. Same as cytnx::linalg::Eigh(const Tensor &Tin, const bool &is_V,...
void Tofile(const char *fname) const
void append(const Tensor &rhs)
the append function.
Definition Tensor.old.hpp:1680
static Tensor Load(const char *fname)
void Save(const char *fname) const
void set(const std::vector< cytnx::Accessor > &accessors, const Tensor &rhs)
set elements with the input Tensor using Accessor (C++ API) / slices (python API)
Definition Tensor.hpp:993
static Tensor Fromfile(const char *fname, const unsigned int &dtype, const cytnx_int64 &count=-1)
Tensor Norm() const
the Norm member function. Same as linalg::Norm(const Tensor &Tin), where Tin is the current Tensor.
Tensor astype(const int &new_type) const
return a new Tensor that cast to different dtype.
Definition Tensor.old.hpp:1127
Tensor & Div_(const T &rhs)
Division function with a Tensor or a scalar, inplacely. Same as operator/=(const T &rhs).
Definition Tensor.old.hpp:1562
static Tensor Load(const std::string &fname)
Load current Tensor from file.
Tensor & operator+=(const T &rc)
addition assignment operator with a Tensor or a scalar.
Tensor Conj() const
the Conj member function. Same as cytnx::linalg::Conj(const Tensor &Tin), where Tin is the current Te...
Tensor Trace(const cytnx_uint64 &a=0, const cytnx_uint64 &b=1) const
the Trace member function. Same as linalg::Trace(const Tensor &Tin, const cytnx_uint64 &a,...
bool equivshape(const Tensor &rhs)
compare the shape of two tensors.
Definition Tensor.old.hpp:1365
Tensor & Pow_(const cytnx_double &p)
the Pow_ member function. Same as linalg::Pow_(Tensor &Tin, const cytnx_double &p),...
std::vector< Tensor > Svd(const bool &is_UvT=true) const
the SVD member function. Same as cytnx::linalg::Svd(const Tensor &Tin, const bool &is_UvT) ,...
std::string dtype_str() const
the dtype (in string) of the Tensor
Definition Tensor.old.hpp:832
Tensor & Mul_(const T &rhs)
Multiplication function with a Tensor or a scalar, inplacely. Same as operator*=(const T &rhs).
Definition Tensor.old.hpp:1540
cytnx_uint64 rank() const
the rank of the Tensor
Definition Tensor.old.hpp:851
const bool & is_contiguous() const
return whether the Tensor is contiguous or not.
Definition Tensor.old.hpp:925
Tensor Exp() const
the Exp member function. Same as linalg::Exp(const Tensor &Tin), where Tin is the current Tensor.
Tensor & Abs_()
the Abs_ member function. Same as linalg::Abs_(Tensor &Tin), where Tin is the current Tensor.
Tensor Add(const T &rhs)
Addition function with a Tensor or a scalar. Same as cytnx::operator+(const Tensor &self,...
Definition Tensor.old.hpp:1490
void flatten_()
The flatten function, inplacely.
Definition Tensor.old.hpp:1649
void Save(const std::string &fname) const
Save current Tensor to file.
Tensor flatten() const
The flatten function.
Definition Tensor.old.hpp:1635
Tensor & Conj_()
the Conj_ member function. Same as cytnx::linalg::Conj_(Tensor &Tin), where Tin is the current Tensor...
Tensor Pow(const cytnx_double &p) const
the Pow member function. Same as linalg::Pow(const Tensor &Tin, const cytnx_double &p),...
int device() const
the device-id of the Tensor
Definition Tensor.hpp:521
Tensor real()
return the real part of the tensor.
Tensor imag()
return the imaginary part of the tensor.
Tensor to(const int &device) const
copy a tensor to new device
Definition Tensor.old.hpp:896
void Tofile(std::fstream &f) const
Tensor get(const std::vector< cytnx::Accessor > &accessors) const
get elements using Accessor (C++ API) / slices (python API)
Definition Tensor.hpp:961
void set(const std::vector< cytnx::Accessor > &accessors, const T &rc)
set elements with the input constant using Accessor (C++ API) / slices (python API)
Definition Tensor.old.hpp:1320
Tensor Max() const
the Max member function. Same as linalg::Max(const Tensor &Tin), where Tin is the current Tensor.
Tensor permute(const std::vector< cytnx_uint64 > &rnks) const
perform tensor permute on the cytnx::Tensor and return a new instance.
Definition Tensor.old.hpp:958
Tensor Div(const T &rhs)
Division function with a Tensor or a scalar. Same as cytnx::operator/(const Tensor &self,...
Definition Tensor.old.hpp:1551
Tensor Mod(const T &rhs)
Definition Tensor.old.hpp:1616
void Init(const std::vector< cytnx_uint64 > &shape, const unsigned int &dtype=Type.Double, const int &device=-1, const bool &init_zero=true)
initialize a Tensor
Definition Tensor.old.hpp:754
Tensor Cpr(const T &rhs)
The comparison function.
Definition Tensor.old.hpp:1573
Tensor & Exp_()
the Exp_ member function. Same as linalg::Exp_(Tensor &Tin), where Tin is the current Tensor.
Tensor & InvM_()
the InvM_ member function. Same as cytnx::linalg::InvM_(Tensor &Tin), where Tin is the current Tensor...
const std::vector< cytnx_uint64 > & shape() const
the shape of the Tensor
Definition Tensor.hpp:541
Tensor Min() const
the Min member function. Same as linalg::Min(const Tensor &Tin), where Tin is the current Tensor.
const T & at(const std::vector< cytnx_uint64 > &locator) const
Definition Tensor.old.hpp:1170
Storage & storage() const
return the storage of current Tensor.
Definition Tensor.hpp:1036
static Tensor from_storage(const Storage &in)
Convert a Storage to Tensor.
Definition Tensor.old.hpp:805
Tensor & Sub_(const T &rhs)
Subtraction function with a Tensor or a scalar, inplacely. Same as operator-=(const T &rhs).
Definition Tensor.old.hpp:1520
#define cytnx_error_msg(is_true, format,...)
Definition cytnx_error.hpp:16
Helper function to print vector with ODT:
Definition Accessor.hpp:12
Device_class Device
data on which devices.
cytnx::UniTensor operator*(const cytnx::UniTensor &Lt, const cytnx::UniTensor &Rt)
The multiplication operator between two UniTensor.
double cytnx_double
Definition Type.hpp:53
uint32_t cytnx_uint32
Definition Type.hpp:56
bool cytnx_bool
Definition Type.hpp:64
std::complex< double > cytnx_complex128
Definition Type.hpp:63
float cytnx_float
Definition Type.hpp:54
int16_t cytnx_int16
Definition Type.hpp:60
std::complex< float > cytnx_complex64
Definition Type.hpp:62
cytnx::UniTensor operator-(const cytnx::UniTensor &Lt, const cytnx::UniTensor &Rt)
The subtraction operator between two UniTensor.
int32_t cytnx_int32
Definition Type.hpp:59
uint16_t cytnx_uint16
Definition Type.hpp:57
uint64_t cytnx_uint64
Definition Type.hpp:55
int64_t cytnx_int64
Definition Type.hpp:58
cytnx::UniTensor operator+(const cytnx::UniTensor &Lt, const cytnx::UniTensor &Rt)
The addtion operator between two UniTensor.
cytnx::UniTensor operator/(const cytnx::UniTensor &Lt, const cytnx::UniTensor &Rt)
The division operator between two UniTensor.